Pro-tumoral inflammation



Multiple "normal” cell types are present in tumors
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The tumor microenvironment evolves during
malignant progression...

Core of Primary Tumor Invasive Tumor Metastatic Tumor
Microenvironment Microenvironment Microenvironment

Hanahan & Weinberg (Cell, 2011)



Stromal cell components of carcinomas

Figure 13.1b The Biology of Cancer (© Garland Science 2007)

Invasive colon carcinoma
N: normal colonic mucosa
T: tumor

TAS: tumor-associated
stroma, mostly comprising
fibroblasts (brown).

In this invasive tumor, the
stromal cell component is
conspicuous (note the
abundance of TAS compared
to normal colon).



Hypotheses: Stromal cell components
of carcinomas

« Possible origins and functions of tumor-associated
stromal cells:

1. ? They are just the remnants of cells that pre-existed
at the site where the tumor has developed. They do
not play fundamental roles (either positive or negative)
during tumor progression (bystander role).

2. ? They are recruited actively, and possibly
activated/induced, by the growing cancer cells. They
largely support tumor progression.

3. ? They represent an attempt by the host to eradicate
the tumor.
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Question

If cancer cell-stromal cell interactions are essential for tumor
progression (as are epithelial cell-stromal cell interactions in
normal organs), how can cancer cells be routinely
propagated in vitro in Petri dishes in the absence of stromal
cells??

Henrietta Lacks
cervical cancer (1952)

Hela cells



Response

Cancer cell lines are the result of Darwinian selection:

Some cancer cells may be selected that can propagate in vitro
following extended culture of dissociated tumor fragments.
So, cells emerge and expand that can grow independent
of stromal cells. Serum is provided as a source of growth
factors.

These cancer cell lines generally grow as aggressive tumors
when inoculated in mice (tumor xenografts), and may
represent a stage of tumor progression that goes beyond
the one reached by the cancer cells in the primary tumor.
They can be propagated for decades in vitro and in vivo...



Tumor xenografts derived from cancer cell lines lack
the hlstologlcal features of the prlmary tumor
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Why cancer cell lines do not make tumors with the same histology (including
architecture and stromal cell components) as the parental tumor?
- Site of injection (ectopic, generally subcutaneous)
- Independence from heterotypic cell interactions (evolved in vitro)
- It is a clone: Lack of stem / progenitor cell hierarchy or heterogeneity w/in the
cancer cell population

Conseguences: Tumor xenograft models (in mice) that ignore heterotypic cell
interactions amongst cancer and stromal cells may fail to reproduce the biology
of the parental tumor and predict tumor responses to anti-cancer therapies.



How do tumors orchestare a
stromal tissue?

Tumors are wounds that never heal
(recap)



How do cancer cells establish heterotypic interactions
with (recruited) stromal cells?

They do so by activating a complex, physiological genetic
program that is encoded in the genome of normal
(epithelial) cells: the wound healing response.



Wound healing (stromal response)
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Wound healing (stromal response)
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Figure 13.14 The Biology of Cancer (© Garland Science 2007)



Adherens junctions in epithelia
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Wound healing (epithelial response)
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Epithelial-to-mesenchymal transition (EMT)
EMT

Process whereby epithelial cells acquire some
of the features of mesenchymal cells (e.qg.,
fibroblast-like phenotype). This is associated
with the downregulation of E-cadherin and the
upregulation of N-cadherin, which cannot form
adherens junctions.

Such phenotypic transition is used by
epithelial cells to acquire increased motility
and invasive properties.

EMT occurs at the edge of wounds, enabling
the epithelial cells to migrate and “regenerate”
the damaged epithelium. It is a reversible
genetic program.

Platelets and macrophages release TGFb.
Fibroblasts and macrophages also produce
MMPs that liberate matrix-bound TGFb. It is a
Cytokeratin (epithelial marker) major inducer of the EMT program.

Alpha-smooth muscle actin (mesenchymal marker)

Figure 13.13b The Biology of Cancer (© Garland Science 2007)



Tumors are wounds that never heal

Why?
(Recap from angiogenesis class)



Growing tumors rapidly induce new blood vessels
(angiogenesis) around and within the tumor

Cancer cells
proliferate rapidly and
trigger a robust pro-
angiogenic response
mediated by hypoxia
(previous lectures)

Figure 13.32a The Biology of Cancer (© Garland Science 2007)



Features of tumor blood vessels
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Because of these features, tumor blood vessels are poorly functional, leaky
and provide inadequate oxygen and nutrient levels to the tumor mass



Vascular leakiness, fibrin deposition, platelet degranulation,
PDGF/TGF, fibroblast activation, desmoplastic stroma

Chronic angiogenesis L
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Figure 13.16b The Biology of Cancer (© Garland
Science 2007)



Cancer: Wounds that never heal
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Inflammation and cancer



A reminder: Tumor Initiators and promoters

Tumor initiator: Generally a mutagen, causes
genetic or epigenetic changes (mutations) in normal

cells that are necessary (but often not sufficient) for
tumor development.

Tumor promoter: Fosters the growth (proliferation)
of “initiated” cancer cells, enabling their acquisition
of additional features, also genetic, leading to
cancer. A tumor promoter may not be a mutagen.



Tumor Initiators and
promoters: the skin
carcinogenesis model

Tumor initiator: DMBA, 7,12-
dymethylbenzanthracene (a highly
carcinogenic tar constituent)

Tumor promoter: TPA, 12-O-
tetradecanoylphorbol-13-acetate

Carcinoma: malignant

Two mutagenic hits
Figure 11.28 part 2 of 2 The Biology of Cancer
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Tumor promotion by inflammation, the seventh
hallmark of cancer

Self-sufficiency in
growth signals

Insensivity to
anti-growth signals

Evading
apoptosis

Inflammatory
microenvironment

Sustained
angiogenesis Tissue invasion
& metastasis

Limitless
replicative
potential

Colotta et al., Carcinogenesis, 2009



Inflammation is part of the biological response
of body tissues to harmful stimuli, such as
pathogens, damaged cells, or irritants.



Rudolf Virchow, 1863
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In many (most?) cases, chronic inflammation
functions as a tumor promoter, which
supports the expansion/evolution of initiated
(mutated) cancer cells
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Human papilloma virus (HPV) infection and cervical /
oro-pharyngeal cancers

HPV: small DNA viruses that infect keratinocytes and integrate into their genomes.
HPV 16 and 18 are the two most oncogenic strains.

They encode two oncogenic proteins, which provide the initiating event:

» E6: inactivates p53 (ubiquitinase activity; via ubiquitination and degradation)

« E7: inactivates pRB (via inhibition of hypophosphorylated pRB and deployment of
E2F, which promotes cell cycle progression by transactivating E2F-responsive genes)

R point G1/S boundary

}
early/mid G, late G S phase HPV-16/18

pPRb

Cervical cancer

o @
@@

o Tumor promotion by inflammation: The
=

virus is immunogenic, so infected cells are
generally cleared. In those cases when
the immune system does not eliminate the
infection, chronic inflammation promotes
increased epithelial turnover and
augments cancer risk significantly. HPV
may cause cancer within 10-15 years from
Figure 8.23a The Biology of Cancer (© Garland Science 2007) infection.
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Chronic hepatitis B and C virus (HBV, HCV)
infection and hepatocellular carcinoma (HCC
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Initiator: HBV-associated HCC is most frequent in subjects exposed to Aspergillus-derived aflatoxin-
B1, a potent mutagen and carcinogen, which may be the main initiator in this tumorigenesis
process. (Viral genes are not oncogenic per se; HBV does not cause insertional mutagenesis.)

Tumor promotion by inflammation: Continuous cycles of hepatocyte apoptosis and proliferation
(due to viral replication and consequent T-cell mediated killing of infected cells) lead to the
selection/expansion of mutated cancer cells.



Non-steroidal anti-inflammatory drugs (NSAIDs) as
cancer preventive agents
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When a tumor develops, it instigates an
Inflammatory microenvironment
(wound healing response)



Cancer cell NFkB amplifies tumor inflammation
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Cross-talk between cancer and inflammatory cells fosters
malignant progression
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H&E

anti-CD45

Human tumors are heavily infiltrated by leukocytes
(inflammatory/immune cells)

human breast human prostate

malignant malignant
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CD45: total leukocytes (inflammatory cells)

Adapted from van Kempen et al., Eur J Cancer 2006
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Immunosuppression by myeloid cells
("MDSCs”) in cancer



Tumor-infiltrating myeloid cells often express an
Immature phenotype and are termed “meyloid-
derived suppressor cells (MDSCs)”

These immature myeloid cells expand in subjects
with cancer and are known to support tumor
progression, in part, by suppressing tumor-

antagonizing immune cells (T cells, etc.)



Tumor-derived factors promote the expansion of MDSCs

lood and peripheral 1 Bone marrow | Blood and peripheral tissues under
s under physiological | pathological conditions

Inducers of MDSCs
« Tumour cells: GM-CSF, G-CSF,
M-CSF, SCF and VEGF
« Stromal cells associated with
tumours: IL-1B, IL-4, IL-6, IL-10,
IL-13, IFNy, PROK2 and PGE,
« Infection: dsRNA, LPS, HSP,
CpG DNA, flagellin, C5a, SI00AS8,
SI00A9, IFNy and GM-CSF
 Trauma: IL-13, HSP, C5a, SI00A8,
S100A9, IFNy and GM-CSF
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Expansion of immature myeloid cells (MDSCs)
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STAT3 promotes the expansion (& defective maturation)

Of M DS CS STATS3 is arguably the main transcription factor
Tumour cells and tumour that regulates the expansion of MDSCs. MDSCs from

stromal cells tumour-bearing mice have markedly increased levels of
6 phosphorylated STAT3 compared with IMCs from naive
O ~—\ mice®. Exposure of haematopoietic progenitor cells to
v the supernatant from tumour-cell cultures resulted in the

L

activation of JAK2 and STAT3, and was associated with
an expansion of MDSCs in vitro. However, this expansion
was abrogated when STAT3 expression in haematopoi-
NADPH etic progenitor cells was inhibited*. Moreover, ablation
of STAT3 expression through the use of conditional

oxidase Y
complex CIJ ) knockout mice or selective STAT3 inhibitors markedly
Qpﬁ Cytokine reduced the expansion of MDSCs and increased T-cell

| receptor responses in tumour-bearing mice**”. STAT3 activation
is associated with increased survival and proliferation of

@ P) myeloid progenitor cells, probably through the upregula-
tion of the expression of B-cell lymphoma XL, cyclin D1,

MYC and survivin. So, abnormal and persistent activa-

P tion of STAT3 in myeloid progenitor cells prevents their

differentiation into mature myeloid cells and thereby
promotes MDSC expansion.

Recent findings suggest that STAT3 also regulates
production K MDSC expansion by inducing the expression of S100
‘1‘ calcium-binding protein A8 (S100A8) and S100A9, the
. C ) | receptors for which are also expressed on the cell surface of

C:D CD “, G MDSCs. S100A8 and S100A9 belong to the family of S100
i calcium-binding proteins that have been reported to have
* ‘ r’ an important role in inflammation*’. STAT3-dependent
0" 0 upregulation of S100A8 and SI00A9 expression by
- - myeloid progenitor cells prevented their differentiation
Expression of MYC, and resulted in the expansion of MDSCs in the spleens

Proliferation i ) of tumour-bearing and naive transgenic mice that over-
BCL-XL and cyclin D1 express S100A9. By contrast, MDSCs did not expand in

the peripheral blood and spleens of mice that were defi-

Gabrilovich & N agaraj Nat. Rev. Immunol.. 2009 cient for S100A9 following challenge with tumour cells or




Tumor-infiltrating myeloid cells often express
an immature phenotype and are termed
“meyloid-derived suppressor cells (MDSCs)”

These Iinflammatory myeloid cells produce
reactive free radicals that abate anti-tumor
Immunity, e.g. by blocking T cells, a process
termed immunosuppression...



Role of ROS In bacterial kKilling by inflammatory cells
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Neutrophils (and macrophages) are inflammatory cells that, once activated at sites
of inflammation, produce reactive oxygen species (ROS) to kill invading
pathogens. The enzyme NADPH oxydase — activated by the respiratory burst —
produces superoxyde (O,7). This is converted to hydrogen peroxyde (H,0O,).
The enzyme myeloperoxydase produces the cytotoxic molecule hypoclorous
acid (HOCI) from H,O, and CI-.



Mechanisms of immunosuppression by MDSCs

Production of ROS and RNOS

ROS. Another important factor that contributes to
the suppressive activity of MDSCs is ROS. Increased
production of ROS has emerged as one of the main
characteristics of MDSCs from both tumour-bearing
mice and patients with cancer®!®13367-70 Tphibition
of ROS production by MDSCs isolated from tumour-
bearing mice and patients with cancer completely abro-
gated the suppressive effect of these cells in vitro'®>*".

Gabrilovich et al., Nat Rev Immunol 2012



Mechanisms of immunosuppression by MDSCs

Peroxynitrite. More recently, it has emerged that
peroxynitrite is a crucial mediator of MDSC-mediated
suppression of T-cell function. Peroxynitrite is a prod-
uct of a chemical reaction between NO and superox-
ide anion, and is one of the most powerful oxidants
that are produced in the body. It induces the nitration
and nitrosylation of the amino acids cysteine, methio-
nine, tryptophan and tyrosine”. Increased levels of
peroxynitrite are present at sites in which MDSCs
and inflammatory cells accumulate, including sites of
ongoing immune reactions. In addition, high levels
of peroxynitrite are associated with tumour progres-
sion in many types of cancer’>”7+"8 an effect that has
been linked with T-cell unresponsiveness. One study’
reported that human prostate adenocarcinomas were
infiltrated by terminally differentiated CD8* T cells
that were in an unresponsive state. High levels of
nitrotyrosine were present in the T cells, which sug-
gested that peroxynitrite was produced in the tumour
microenvironment. Inhibiting the activity of argin-
ase 1 and iNOS, which are expressed in malignant but
not in normal prostate tissue, led to decreased tyrosine
nitration and restoration of T-cell responsiveness to
tumour antigens. In addition, we have shown that per-
oxynitrite production by MDSCs during direct contact
with T cells resulted in nitration of the T-cell receptor
and CD8 molecules, which altered the specific peptide
binding of the T cells and rendered them unresponsive
to antigen-specific stimulation®. However, the T cells
maintained their responsiveness to non-specific stim-
uli. This phenomenon of MDSC-mediated antigen-
specific T-cell unresponsiveness was also observed
in vivo in tumour-bearing mice®.

A very reactive RNOS, peroxynitrite,
can directly inactivate the T-cell
receptor via nitration

MHC
class |

TCR

o@

Alteration of
cell-surface
molecules

o2 +NO

Antigen-specific
suppression

Gabrilovich et al.,

Nat Rev Immunol 2012



Other mechanisms of immunosuppression by MDSCs

Depletion of arginine, which
iImpairs T-cell function

Arginase 1 and iNOS. Historically, the suppressive activ-
ity of MDSCs has been associated with the metabolism
of L-arginine. L-arginine serves as a substrate for two
enzymes, iNOS (which generates NO) and arginase 1
(which converts L-arginine to urea and rL-ornithine).
MDSCs express high levels of both arginase 1 and iNOS,
and a direct role for both of these enzymes in the inhibi-
tion of T-cell function is well established; this has been
reviewed recently*®¢’. Recent data suggest that there is a
close correlation between the availability of L-arginine and
the regulation of T-cell proliferation'"#!. The increased
activity of arginase 1 in MDSCs leads to enhanced
L-arginine catabolism, which depletes this non-essential
amino acid from the microenvironment. The shortage
of L-arginine inhibits T-cell proliferation through several
different mechanisms, including decreasing their expres-
sion of CD3 {-chain® and preventing their upregulation
of the expression of the cell cycle regulators cyclin D3
and cyclin-dependent kinase 4 (REF. 63). NO suppresses
T-cell function through various different mechanisms
that involve the inhibition of JAK3 and STATS5 function
in T cells*, the inhibition of MHC class II expression®
and the induction of T-cell apoptosis®.

Gabrilovich et al., Nat Rev Immunol 2012



Mechanisms of immunosuppression by MDSCs
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Tumor-associated macrophages
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Tumor-associated macrophages (TAMs) are present in
different tumor microenvironments
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TAMs accelerate tumor progression in mouse models

Colony stimulating factor-1 (CSF1) is a monocyte/macrophage
growth and pro-survival factor. Mice lacking CSF1 (Csf10r/op)
have reduced macrophage numbers in several tissues.

MMTV-PYyMT (mammary tumor model)
Csf1+/op Csflor/iop (macrophage deficient)
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TAM ablation decreases tumor growth in mice

Clodronate is a biphosphonate that
depletes macrophages from tissues.
Delivery of clodronate is improved by

combination with lipid carriers (clodrolip)
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TAMSs provide extrinsic support to tumor growth
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Angiogenesis

Seeding at
distant sites

Adapted from Condeelis & Pollard, Cell 2006



Inflammation and cancer: Role of TAMS

Inflammation
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Adapted from Condeelis & Pollard, Cell 2006



TAMSs sustain tumor-promoting inflammation
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Adapted from Qian & Pollard, Cell 2010



Blocking NF-kB activation in macrophages delays
colorectal carcinogenesis in mice
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Adapted from Greten et al., Cell 2004



TAMs promote extracellular matrix remodeling

Inflammation
Tumor cell Matrix

invasion remodeling

Angiogenesis

Seeding at
distant sites

Adapted from Condeelis & Pollard, Cell 2006



TAMs release ECM-remodeling factors that support
angiogenesis and cancer cell motility

Matrix
metalloproteinases

Q Q Q (MMPS)*.
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- Other proteases
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Adapted from Qian & Pollard, Cell 2010



TAMSs promote angiogenesis

Tumor cell
invasion

Inflammation

Matrix

remodeling

Angiogenesis

Adapted from Condeelis & Pollard, Cell 2006



A fraction of TAMSs localize around tumor blood vessels

RIP1-Tag2 pancreatic islet tumor

Perivascular TAMs

Adapted from De Palma et al., Cancer Cell 2005



TAMSs sustain tumor angiogenesis
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Adapted from De Palma et al., Nat Med 2003



MMP9 expression by macrophages triggers the angiogenic switch

GEMM of pancreatic islet
carcinogenesis: RIP1-Tag2 model
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TAM-derived MMP9 supports tumor angiogenesis

K14-HPV cervical cancer model
CIN-1/2
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Adapted from Giraudo et al., J Clin Invest 2004



High TAM numbers correlate with increased tumor
angiogenesis
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(more in next lectures on tumor angiogenesis)

Figure 13.25c The Biology of Cancer (© Garland Science 2007)



TAMs promote cancer cell invasion, intravasation and
metastasis
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Angiogenesis
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Adapted from Condeelis & Pollard, Cell 2006



Perivascular TAMs facilitate cancer cell intravasation
by enhancing their motility

MMTV-PyMT mammary carcinoma
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Adapted from Wyckoff et al., Cancer Res 2007



A CSF1 / EGF paracrine loop between TAMs and
tumor cells promotes cancer cell invasion

MMTV-PyMT mammary carcinoma
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Adapted from Wyckoff et al., Cancer Res 2004
Adapted from Qian & Pollard, Cell 2010


http://cancerres.aacrjournals.org/content/64/19/7022/F4.large.jpg

Blocking CCL2 inhibits metastasis

CCL2 is a chemokine that binds CCR2 on monocytes, the precursors of TAMS.
Expression of CCL2 in the lung tissue promotes recruitment of CCR2+ monocytes
that differentiate into TAMs and promote lung metastasis of breast cancer
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Qian et al., Nature 2011



Recruit other
haematopoietic cells
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High TAM infiltration correlates with poor survival in
Hodgkin’s lymphoma patients
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Adapted from Steidl et al., New Engl J Med 2010



TKI
- Rebastinib
- Regorafenib

Effect on TAMs/tumour

- TAM reprogramming

- Normalization of tumour blood vessels

- Inhibition of tumour growth and metastasis

Ang2 blockade
- Vanucizumab
- Trebananib

TIE2

Effect on TAMs/tumour
- TAM reprogramming
- Anti-tumoural activity

CD40

Co-stimulatory recepto

CCR2 antibodies
- MLN1202
CCR2/
Effect on TAMs/tumour Chemokine receptor

- Inhibition of TAM recruitment PRPS

- Reduction of tumour metastasis e o°

CCL2

CCL2 antibody and CCR2 TKI :
Chemokine

- Carlumab
- BMS-813160
- PF-04136309

Beltraminelli & De Palma, J Pathol 2020

Angiopoietin receptor

TKI

- PLX3397

- BLZ945

- JNJ-40346527

Effect on TAMs/tumour
- TAM depletion

- TAM reprogramming

- Delay of tumour growth

Antibodies

- Emactuzumab
- Cabiralizumab
- AMG820

CSF1R

Growth factor receptor

Effect on TAMs/tumour
- Relieved T cell suppression

Ligand of PD1_ |phibition of tumour growth

Effect on TAMs/tumour

- Enhanced phagocytosis
Immune checkpoint _ |ncreased antigen presentation
- Inhibition of tumour growth

CD47/SIRPa axis

“‘Don’t eat me” signal

Antibodies Effect on TAMs/tumour
- HU5F9-G4 - Enhanced phagocytosis
-TTI-621 and TTI-622 - |nhibition of tumour growth
- CC-90002
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